THE MOLECLLAR STRLCTLRES OFTWO ISOMERS OF Fe $3(C O)_{8}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} *$

R. P. DODGF** NDVERNER SCHOMAKER
Crion Carjide Researcn Insitutc. P.O. Bor z-S, Tarrutozn, N. N. (C.S.A.)
ifleceived July 27th, :964)

ISTRODCCCION

Complexes of iron carbonyl having more than one iron atom are readily obtained by reactions involving iron tetracarbonyi, $\mathrm{Fe}_{3}\left(\mathrm{CO}_{\mathrm{I}_{2}}\right.$. The reaction with diphentlacetylene in methanol yields a violet form of $\mathrm{Fe}_{3}(\mathrm{CO})_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}{ }^{1}$. In boiling benzene or peiroleum ether, however, the violet complex undergoes rearrangement to a more stable black isomer.

These new three-center complexes were submitted to this laboratory for structure determination by W: Hübel of Union Carbide European Research Associates. It was known that the black isomer has $\mathrm{C}-\mathrm{O}$ absorption bands in the infrared at about $5+{ }^{\circ} \mu$, in the region of carbonyl-bridge stretching frequencies, while the violet form does not. Also, the black isomer decomposes at 150° to the vellow complex $\mathrm{Fe}_{2}\left(\mathrm{CO}_{5}\right)_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, a compound thought to have the same basic structure as $\mathrm{Fe}_{2} \mathrm{C}_{12} \mathrm{O}_{3} \mathrm{H}_{3}$ as determined by Hock and Mills- The black isomer was therefore presumed to be structurally similar to the Hock and Mills compound, but for the violet isomer no structural inierence was available other than the absence of bridge carbonyls.

ENPERIMENTAL

The unit cell data for both isomers (Table I) were meazured by use of a single crystal orienter mounted on a Generai Electric CK RD-5 difiractometer. The accuracy of the ceil parameters is about the same as is obtained by the more usual film methods.

The crostal of the black isoner chosen for the diffraction study was close to a rectangular parallelopiped of dimensions o. IS $\mathrm{mm} \cdot 0.1 \mathrm{~mm}$: 0.06 mm . The violet crystal was of abut the same size but somewhat less regular in shape-

The data for both compounds were obtained with Zr -fitered Mo radiation and a G.E. scintillation counter. The stationary-crystal, stationary-counter method was used with particular care to meet the various criteria for collecting accurate integrated intensities ${ }^{3}$. A good sobirce profile proved to be the most important requisite for a smooth-topped diffraction curve. The take-off angle was, degrees, allowing a negligible separation of the $x_{1}-x_{2}$ doublet at the maximum value of 2Θ used. The corresponding errors should not exceed $5^{\circ} .0$ in the intensity y^{-i} and should affect mainly the temperature factor.

[^0]All reflections were counted for a constant time, which results in poorly determined weak intensities. Also, several hundred counted intensities (Table I) for both crystals were found to be no stronger than background. The background was estimated in two different ways as described below.

TABLE
UNIT CELL DATA FOR THE ISOMERS OF $\mathrm{Fe}_{3}(\mathrm{CO})_{8}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$

	Violet form	Black form
a_{0}	35.49	9.39
b_{0}	S. 31	15.45
c_{0}	21.75	13.29
30	$115.1{ }^{2}$	$96.5=$
I	63043	$3^{1}+3{ }^{3}$
Z	5	4
Space group		$P 210$
Observed density	1.575	1.573
S-ray density	1.576	1.57
No. of reftections	1969	$1 \mathrm{SII}_{1}$
No. with $\mathrm{F}=0$	1649	1510

STRCCTVRE DETERMINATION AND REFINEMENT

For the black form, the three-dimensional Patterson function was first calculated with a general IBM-gogo program written by- A. Zalkin. The symmetry was assumed to be $P_{2}{ }_{1} c$, so that in general the three iron atoms of the molecule would lead to 21 heari-atom-heary-atom peaks, excluding the origin, in the asymmetric unit. It was then possible to account ior the major features of the Patterson by assigning the three heary-atom positions. The heary-atom-light-atom interactions amounted to only a tolerable noise background.

The light atoms of the black isomer were located by several cycles of Fourier refinement. Several of the carbon atoms were not well defined and the discrepancy index $R=こ F_{o b s}-F_{\text {calcd }} \Sigma F_{o b s}$ would not improve beyond o.27. Two creles of least squares, in which only the parameters for the iron atoms were raried, resulted in an improvement of R to o.IS. Full-matrix least squares was then applied to a trial structure including all of the atoms, and this resulted in successfui convergence to a final R value of o.oS- for the 15 Io reflections of non-zero weight.

During the refinement it was discovered that IS of the original measurements were seriously affected by streaks from nearby strong reflections. These measurements were given zero weight in the final refinements. The final position parameters and temperature factors along with the estimated standard deviations are given in Table 2.

The same general approach was made to the structure determination of the violet isomer. However, greater difficulty was encountered in obtaining the correct heary-atom positions. An assignment of the iron-atom parameters was made which seemed to give a good fit to the Patterson, but repeated attempts at Fourier refinement met with no success. Without abandoning the space group assignment of C_{2} / c, a new set of heary-atom positions was arrived at that soon proved to be correct. The cause of difficulty was that the y parameters of the correct assignment are close to either

TABLE 2
ATOMIC PARAMETERS FOR BIACR ISOMER

－ 100 m	x	$\sigma=$	5	σ_{y}	$=$	$\sigma=$	B	σ_{B}
Fe_{1}	.0543	.2003	．174	．000I	.2939	．0001	2.64	． 06
Fe_{2}	－3026	.0003	－0S91	．0001	．15S7	．0001	3.01	．07
Fe_{3}	－3421	.0003	．157！	． 0001	－3032	．0001	2.36	． 07
O_{1}	－365：	.0015	$-.0604$	．000S	.1546	．0007	6.55	－37
O_{2}	－3912	．0013	． 1170	．0007	－0451	．0007	5－27	．33
O_{3}	．6030	．0015	． 1054	．0007	－ $2+39$	．0007	6.57	． 35
O．	－533\％	－0015	－2793	．0003	－322S	．000\％	7－12	－39
O_{5}	－5103	．0014	．0354	．0003	－4292	．0007	6.27	－34
O_{5}	．2326	－0012	－2405	．0007	－4249	．0007	5.23	－3：
$\mathrm{O}_{\mathbf{4}}$	－．0845	．0013	－3057	．0007	－2SS9	．0006	5－6：	－34
O_{3}	－．1292	．0013	． $12-5$	．0005	－3S5S	．0007	5－41	－32
$C_{\text {I }}$	－3355	．con2	．000：	．0012	．16－9	．0011	6.13	－5\％
C^{2}	． 3532	．0019	． 1047	．0010	．1022	．0011	4.93	． 45
C_{3}	－4707	．0023	－1105	．0012	．23S．4	．OOII	6.44	－57
$C^{\text {c }}$	$-\div 5 \pm 3$	． $00 \div 2$.2296	．0012	－3147	．0011	5.58	－54
C_{5}	－4373	．0019	．110－	．0010	-3520	． 0010	4－27	$.4^{6}$
C_{6}	－$=1$ So	－0019	．20S1	.0010	－3650	．0011	4.65	－45
C	－．014S	．0013	． 2551	．0010	－29，6	.0009	$3 \cdot 37$	－42
C_{5}	－．0．406	． 0020	－1454	－00：0	－3497	． 0010	4－76	－43
Cs	．099S	．0016	－ 1.459	．000S	－ 1.98	．0003	$2-46$	－3S
C_{10}	$\therefore 204$	．0016	．1953	．0003	.2103	．0003	2.42	． 33
C_{21}	．1915	．0016	－0－62	．000．3	-25_{5}	．000S	2.29	－38
Cl_{12}	．oS74	．0016	－oSir	．0009	$-219+$	． 0003	2.65	－3S
C_{13}	－－OII2	．0017	－1071	．0009	.1157	． 0003	3.05	． 39
6_{13}	－2523	．0017	．2624	．0009	． 1719	．0009	3－37	－42
C_{15}	－9924	．0016	．0133	．0009	．3372	．0009	3.00	． 41
C_{18}	－．0206	．0016	．0239	．0009	－I9j6	． 0009	2.45	－35
C_{12}	－．1540	． 0019	－ 1059	． 0010	． 2251	．0009	3.97	－ 43
C_{23}	$-25 S_{5}$	．0013	－153－	－0010	－06\％5	．0010	$4-21$	－44
C_{19}	－2125	．0019	－1953	．0010	－．0034	－0010	4.15	－45
$C=0$	－0，05	－0020	－1032	－0010	－．0134	－0009	$4-41$	－4 7
$C_{=1}$	．0356	．0015	－15゙85	．0009	－0．54	.0009	3.56	-41
$C=$	－1495	．0013	－3104	． 0010	－ 507	．0009	3.77	－42
C_{23}	． 1320	．0019	－375\％	．－010	－1：$=7$.00009	4.29	.+6
C_{2}	-3 ± 35	－0019	-3353	．coro	．0935	． 0009	4.26	.45
$C^{=5}$	-4225	．0019	－335	－0011	． 1094	．0009	5.12	-45
$\mathrm{C}_{ \pm}$	－3940	．0015	．2フン2	．0009	． $15=4$	． 0009	417	-45
C－	－2074	．0017	－．0595	．0003	－3113	． 00009	2.53	．37
C＊	－2034	．0017	－114：	．0009	－3534	．00：0	3－71	$\cdot+3$
$C=3$	－ 1049	－00：7	－．1034	．0010	－309	．0009	3.52	-41
C_{3}	－ 519	．0017	－．0315	． 0010	－609	．0009	3.70	43
C_{3}		．0017	－0プ○	． 0010	－ 1123	．0009	3.55	－42
C_{3}	－ 1197	．0013	－0005	．0003	$\therefore 395$	．0009	$3 \cdot 33$	－42
C_{3}	－－2－3．3	．0019	－－0．82	．0010	－－112	－0010	4．43	＋5
C_{31}	－－2：90	． $00 \geq 0$	－．0．41	． 0011	－1703	．0011	5．37	－5
$\mathrm{C}_{ \pm 5}$	－．1319	－00：0	－．0519	． 0010	． 0943	． 0010	＋－75	－47
C_{36}	$-.0235$	．0019	－0015	． 0010	－1215	．0010	$\div-36$	$\cdot 4^{6}$

one－quarter or zero，and that the \approx parameters are all about equal（Table 3）．This fact causes the Patterson peaks to be grouped together in a way that is not easy－ to unfold．

A refinement of the heary－atom parameters was caried out by least squares before any light atoms were locaied．After this calculation，all of the light atoms of the structure were located easily by Fourier refinement．Full－matrix least－squares re－

TABLE 3
ATOMIC PARAMETERS FOR VIOLET ISOMER

flom	\boldsymbol{x}	σ_{5}	1	σ_{3}	\approx	$\sigma=$	B	σ_{B}
Fe_{1}	. 130 S	. 0001	.259S	.000.4	. 1568	.0002	2.36	. 05
Fe	-1551	. 0001	-.0876	.0005	-164	.0002	3.03	.09
Fe_{3}	.0S45	-0001	-0422	. 0005	. 1405	.0002	2.94	. 09
O_{1}	. 0905	. 0005	-5554	.0025	. 1458	-0009	5.62	-47
O_{2}	.1953	.0006	- +406	. 0025	.1785	.0009	6.59	-5I
O_{3}	-1369	. 0005	-.2749	.0026	.0601	.0009	6.53	-50
O_{4}	. 2300	. 0005	.0489	. 0023	.1921	. 0008	6.15	. 48
O_{3}	. 1609	.0005	-.2731	. 0025	. 2619	.0009	6.30	.46
B_{2}	.0-52	.0005	-17-3	. 0021	. 2407	.0003	5.16	$\cdot \cdot 95$
0	. 0126	.0003	.1946	.0022	. 1163	.000S	5.62	- 46
O_{8}	. 0501	.0006	-.1927	.0027	.0302	. 0011	8.17	. 60
C_{1}	. 1068	.0007	$-43^{\text {S }} 5$. 0035	- 1496	.0012	+32	.65
C	. 1710	. 00008	-3579	. 0033	1715	-0013	4.48	. 69
C_{3}	-1459	.0007	- 1680	.0035	.0994	. 0014	5.02	. 69
C_{4}	. 2042	.0003	. 0173	.0034	- $1 \mathrm{SO}_{5}$.0012	4.61	. 66
C_{5}	. 1639	. 0006	-.1689	.0030	-2254	.0012	3.33	. 59
C_{6}	.0527	. 000 S	-.0901	. 0036	-2017	.0015	6.10	. 79
C-	. $0+17$. 00009	. 1393	. 0039	.1254	. 0015	6.86	-85
coss	. 0639	. 0 cos	-.0997	. 0039	.0720	.0015	6.59	. ${ }_{4}$
C.	.1568	. 0006	. 1256	.0025	-2389	.0010	1.55	-48
C_{10}	.1192	. 0005	. 1592	.0024	.2285	. 0009	${ }^{1} \cdot \mathbf{i}^{\circ}$	-46
C_{11}	.0960	. 0005	.1636	.0024	. 06093	. 00009	1.09	$-{ }^{6}$
C_{12}	. 1339	. 0006	. 1345	.0025	. 0833	. 0010	1.77	. 50
C_{13}	.1902	. 0006	-1632	.0020	. 3039	. 0010	$\underline{1.35}$. 50
C_{12}	-1053	. 0006	. 134	.0027	.2732	. 0010	2.45	-50
C^{15}	.0674	. 00006	-2151	-0023	-002-	. 0010	2.32	. 30
C_{16}	.1525	.0005	-173-	. 0025	.0377	. 0009	${ }^{5} .4$	47
C_{1}	-2203	. 0000 ;	-0499	.002S	. 3357	. 0010	2.62	-51
C10	-25こ0	. 0000	. 0366	.0030	-3974	. 0012	3.52	-61
C_{19}	.2552	.000t	-2303	. 0032	- 4254	. 0010	3.19	-5
C	-2264	. 0008	-3516	. 0035	-3970	. 0013	$5 \cdot 37$	- 7^{2}
\bigcirc	.1943	. 0000	-315?	.0027	. 3360	. 0010	2.26	-51
\bigcirc	-1222	.0006	. 1356	. 0023	-3434	. 0011	2.76	-55
\bigcirc	.1103	.000	. 1900	.002S	-3920	. 0011	3.30	. 56
$C=$.0325	. 0008	-3124	.0031	. 3 III	.0012	4.07	-6I
C_{3}	.0643	.000S	-3921	. 0034	-3170	. 0013	5.61	-72
Cos	.0-6-	.0007	- 3350	. 0030	-26.48	. 0012	$4 \cdot 36$.62
\bigcirc	.0427	. 00006	-3433	.0023	.0032	. 0011	2.94	. 56
C*	. 0156	. 0007	- 4037	. 0033	-.0709	. 0013	4.03	.62
C^{-8}	.00S3	. 0008	-3120	. 0039	$-.1264$. 0014	6.32	. 77
Com	. 0303	.000:	-1549	. 0033	\cdots-. 1200	.0012	+36	. 64
C_{31}	. 0598	.000:	. 1226	. 0030	$-.0571$.0012	3.67	. 60
C_{3}	- 7 - 4 -	. 00006	-3297	.0026	.001S	. 0010	2.05	-50
C_{33}	. 533	. 0002	. 3709	. 0030	-.0477	.0012	3.56	. 62
C_{3}	-IS 29	. 00006	- 2593	.0030	-.0548	. 0010	2.92	. 52
C_{5}	-19:9	. 00006	.1120	.0027	-.0213	. 0011	2.90	-55
C_{36}	-5\%\%	.0006	.0713	.00-5	. $0 \geq 19$. 0010	I. 85	-49

finement for the complete structure brought the R index to 0.127 for 1649 reflections of non-zero weight. Again, a few reflections that were badly overlapped or missed were given zero weight in the refinement. The final position parameters and standard deviations for the violet isomer are given in Table 3 -

The least-squares weight assigned to each reflection from the violet compound was proportional to the expression $[C-B \bar{j} /[C+(B / 2) \bar{I}$, where C was the count
observed at the peak position and B was the average of counts made for the same time as C at two opposite nearby points along the 2θ streak. (A more exact treatment would of course take account of the variation of the Lorentz and polarization factors with 2θ.) Reflections that counted no higher than background were given zero weight. For the black compound, B was estimated from a general survey and used in the same weight expression.

Part of the difference between the two final R values (0.127 for violet as against $0.0 S$ - for black) is surely due to difference in accuracy of the two methods of estimating the background, but other differences between the two structures and sets of data are clearly considerably more important. If the least-squares refinement had been properly made on the essential observations-the counts of peaks and background levels-the two structure determinations of isomeric substances with identical atomic compositions of the primitive unit cells (and asymmetric units) would probably have afforded an interesting practical iest of the two methods; the actual refinement on F, unfortunately still rather conventional, leaves the effect of the various differences hopelessly mixed. We can only mention some of the advantages of the general survey while indicating how it was made and how its drawbacks were overcome. Background counts twice as long as the peak counts were made at suitable, usually varying intervals in 2Θ and the goniostac angles Φ and $\%$, such that routine linear interpolation on the computer would preserve good accuracy. The necessary spacings in Φ and ψ were very-broad, in 2Θ less so. Care had to be taken to avoid Bragg peaks and the associated streaks, and to allow for significant streaks underlying the peak counts especially for some of the inner reflections, but this was not so difficult as might be expected. The twoiold advantage of the surver is that a great overall saving in time is realized while the resulting background counting accuract is easily made as high as could be desired. Actually, the separate background counts for the violet compound were longer than optimal relative to the peal counts (hardly any time could in fact have been saved by mahing them shorter); even so, the counting precision of the surver background was always at leas 5 good and wouid generally have justified weights for the weat nonzero reflections about a third higher than were used.

DECTESION OF THE TWO STRECTERES
The central feature of the structure of the black form of $\mathrm{Fe}_{3}\left(\mathrm{CO}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right.$ (Fig. I) is the ferracyclopentadiene ring with the unique aspect of x-bond formation to iron atoms on both sides of the ring. This arrangement is absent in the violet form (Fig- 3) and, in a sense, represente a final stage in the stabilization of the original iron-carbonyl-acetylene system.

The estimates of the errors in the bond distances and bond angles of both isomers (Tabit $4,5,6$, and 7) were made assuming that the errors are isotropic. An inspection of the least squares result: confirmed that this was a reasonable assumption.

Aside from the twisting of the phenyl groups out of the plane of the five-membered ring, the symmetry of the molecule of the black form is close to C er. One mirror plane is defined by the five-membered ring and the other by the iron atoms. The twists of the phenyl groups, all by about 55° (Table S) and all in the same sense, upset this symmetry. Nearly octahedral bonding of the carbon atoms to Fe_{3} prevails (Fig. 2), the 7% angle in the five-membered ring representing the greatest deviation.

Fig. $1 .-1$ molecule of the black isomer of $\mathrm{Fe}_{3}\left(\mathrm{CO}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right.$. The projection is perpendicular
io the b axis.

Fig. 2. Numbering system for the black isomer.
J. Organometal. Chem., 3 (1965) $274-2 \mathrm{~S}_{4}$

Fig. 3. 1 moiecule of the violet form of $\mathrm{Fe}_{4}\left(\mathrm{CO}_{4} \mathrm{C}_{4} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$. The projection is perpendicular to the r axis.

Fig. 4. Numbering system for the violet isomer.

TABLE ！
boND distances in the black isomer

Bond	Distance（ 4 ）	σ	Bond	Distan	σ
$\mathrm{Fe}_{1}-\mathrm{Fe}_{3}$	2－42S	． 003	$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.189	．026
$\mathrm{Fe}_{2}-\mathrm{Fe}_{3}$	$2-435$	． 003	$\mathrm{C}_{2}-\mathrm{O}_{3}$	1.165	． 023
$\mathrm{Fe}_{2}-\mathrm{C}_{8}$	1.842	． 019	$\mathrm{C}_{3}^{-}-\mathrm{O}_{3}^{-}$	1.235	．025
$\mathrm{Fe}_{1}-\mathrm{C}_{2}$	1.747	．017	$\mathrm{C}_{4}-\mathrm{O}_{4}$	1． $\mathrm{I}_{7} \mathrm{~S}$	． 025
$\mathrm{Fe}_{2}-\mathrm{C}_{3}$	1．729	． 019	$\mathrm{C}_{5}-\mathrm{O}_{5}$	1.159	．023
$\mathrm{Fe}_{1}-\mathrm{C}_{9}$	2．162	．015	$\mathrm{C}_{6}-\mathrm{O}_{6}$	1.194	
$\mathrm{Fe}_{1}-\mathrm{C}_{10}$	2.12 S	． 015	$\mathrm{C}_{5} \mathrm{O}_{-}$	1.142	．021
$\mathrm{Fe}_{1}-\mathrm{Cl}_{12}$	2.091	． 015	$\mathrm{C}_{5}-\mathrm{O}_{5}$	1.163	．022
$\mathrm{Fe}_{1}-\mathrm{C}_{12}$	2.202	． 016	$\mathrm{C}_{3}-\mathrm{C}_{10}$	1.435	－021
$\mathrm{Fe}=-\mathrm{C}$	1． 223	．022	$\mathrm{C}_{9}-\mathrm{C}_{12}$	1.450	． 022
Fe	1.731	． 019	$\mathrm{C}_{12}-\mathrm{C}_{12}$	$1 .+59$	． 021
$\mathrm{Fe}=-\mathrm{C}_{3}$	1.751	． 021	$\mathrm{C}_{9}-\mathrm{C}_{23}$	1.500	．022
$\mathrm{Fe}=-\mathrm{C}_{9}$	$=191$	． 015	$\mathrm{C}_{10}-\mathrm{C}_{14}$	1.535	．022
$\mathrm{Fe}=-\mathrm{C}_{10}$	2.093	． 015	$\mathrm{C}_{12}-\mathrm{Cl}_{15}$	1． 499	．022
Fe $\mathrm{Fe}=-\mathrm{C}_{11}$	2.169	． 015	$C_{12}-C_{16}$	1.502	．022
$\mathrm{Fe}=\mathrm{Cl}_{12}$	2.165	． 016			
$\mathrm{Fe}_{3}-\mathrm{C}_{3}$	1.985	． 021			
$\mathrm{Fe} \mathrm{Cl}_{4}$	1．900́	． 0.1			
$\mathrm{Fi}_{3}-\mathrm{C}_{5}$	1.724	． 015			
$\mathrm{Fe}_{3}-\mathrm{C}_{5}$	1.991	． 019			
$\mathrm{Fe}_{3}-\mathrm{C}_{10}$	2.031	．015			
$\mathrm{Fe}_{3}-\mathrm{C}_{11}$	2.063	． 015			

T．3BLE 5
BOND ANGEES IN THE MLACK ISOMER

－\％\％	Degrecos	σ	． 1 HSMe	Degrees	σ
$\mathrm{F} \mathrm{Cl}_{1}-\mathrm{F}_{\text {cus }}-\mathrm{Fr}_{2}$	ミ－F\％	0.1	$\mathrm{F}_{5}-\mathrm{C}_{10}-\mathrm{C}_{15}$	$\underline{120.0}$	1.1
C－－Fer ${ }^{-1}$	S4．9	0.8	$\mathrm{Fe}_{3}-\mathrm{C}_{10}-\mathrm{C}_{9}$	119.9	I．I
$\mathrm{C}_{1}-\mathrm{Fe}^{2}-\mathrm{C}_{2}$	32.3	1.0	$\mathrm{C}_{9}-\mathrm{C}_{10}-\mathrm{C}_{14}$	113.4	1.3
$\mathrm{C}_{10}-\mathrm{Fe}_{3}-\mathrm{C}_{11}$	7T－4	0.0	$\mathrm{Fe}_{3}-\mathrm{C}_{12}-\mathrm{C}_{15}$	129.2	I．I
F_{2}	17アー！	1.9	$\mathrm{Fe}_{3}-\mathrm{C}_{11}-\mathrm{C}_{23}$	117.3	1.0
$\mathrm{Fe}-\mathrm{Cl}^{-\mathrm{O}_{2}}$	1－オ－5	1.7	$C_{12}-C_{15}-C_{15}$	121.7	1.3
$\mathrm{Fe}_{2}-\mathrm{C}_{3} \mathrm{CO}_{3}$	14N．2	1.7	$\mathrm{C}_{10}-\mathrm{C}_{9}-\mathrm{C}_{13}$	12S．5	1.4
$\mathrm{Fe} \mathrm{C}_{2}^{-}-\mathrm{C}_{3}-\mathrm{CO}_{3}$	131.2	1.6	$\mathrm{C}_{10}-\mathrm{C}_{9}-\mathrm{C}_{12}$	112.3	1.3
$\mathrm{Fe}_{3}-\mathrm{C}_{3}-\mathrm{O}_{2}$	170.5	1.9	$C_{12}-C_{9}-C_{13}$	I19．1	I． 3
$\mathrm{Fe}_{3}-\mathrm{C}_{3}-\mathrm{O}_{5}$	$1-3$－	5.0	$\mathrm{C}_{9}-\mathrm{C}_{12}-\mathrm{C}_{11}$	112．3	1.3
$\mathrm{F}_{2}=-\mathrm{C}_{C}-\mathrm{O}_{8}$	137.7	1.5	$\mathrm{C}_{9}-\mathrm{C}_{12}-\mathrm{C}_{16}$	1 －2． 5	1.4
$\mathrm{He}_{1}-\mathrm{C}_{5}-\mathrm{O}_{6}$	$1+3.5$	1.5	$\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{16}$	125．2	1－4
$\mathrm{Fe}_{1}-\mathrm{C}_{-} \mathrm{O}_{4}$	174	1.6			
$\mathrm{Fe}_{2}-\mathrm{C}_{5}-\mathrm{O}_{5}$	$1-6.9$	1.6			
$\mathrm{Fe}_{2}-\mathrm{C}_{3}-\mathrm{Fr}_{3}$	S0．5	0.5			
$\mathrm{Fe}_{1}-\mathrm{C}_{8}-\mathrm{Fe}_{3}$	${ }_{7} \mathrm{~S}-5$	0.7			
$C_{4}-F_{2}-C_{5}$	S9．1	0.9			
$\mathrm{C}_{3}-\mathrm{Fe}_{3}-\mathrm{C}_{5}$	1－7．6	0.8			

TABLE 6
LOND DISTANCES IN THE VIOLET ISOMER

Bord	Disfance (A)	σ	Borsd	Distar	σ
$\mathrm{Fe}_{2}-\mathrm{Fe}_{2}$	2.459	.005	$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.142	.034
$\mathrm{Fe}_{2}-\mathrm{Fe}_{3}$	2.457	.005	$\mathrm{C}_{2}-\mathrm{O}_{2}$	1.167	.035
$F e_{2}-\mathrm{Fe}_{3}$	2.592	.005	$\mathrm{C}_{3}-\mathrm{O}_{3}$	1.149	.036
$\mathrm{Fe}_{1}-\mathrm{C}_{1}$	1.720	.028	$\mathrm{C}_{4}-\mathrm{O}_{4}$	1.183	.034
$\mathrm{Fe}_{1}-\mathrm{C}_{2}$	1.899	.02S	$\mathrm{C}_{5}-\mathrm{O}_{5}$	1.214	.032
$\mathrm{Fe}_{ \pm}-\mathrm{C}_{3}$	r.3er	.030	$\mathrm{C}_{6}-\mathrm{O}_{6}$	1.159	.035
$\mathrm{Fe}_{5} \mathrm{C}_{5}$	1.-56	.028	$\mathrm{C}_{2}-\mathrm{O}_{7}$	1.150	.038
$F e^{2}=C_{5}$	1.750	. 025	$\mathrm{C}_{3}-\mathrm{O}_{8}$	1.139	.040
$\mathrm{Fe}_{2}-\mathrm{C}_{5}$	1.750	.03I	$\mathrm{C}_{3}-\mathrm{C}_{10}$	1.395	.030
$\mathrm{Fe}_{3}-\mathrm{C}_{2}$	1.333	.033	$\mathrm{C}_{5}-\mathrm{C}_{2}=$	3.112	.031
$\mathrm{Fe}_{3}-\mathrm{C}_{3}$	1.500	.033	$\mathrm{C}_{10}-\mathrm{C}_{12}$	3.191	.028
$\mathrm{Ee}_{1}-\mathrm{C}_{0}$	1.930	.022	$C_{12}-C_{12}$	1.3.5	.030
$\mathrm{Fe}_{2}-\mathrm{C}_{10}$	1.950	.021	$\mathrm{C}_{3}-\mathrm{C}_{13}$	1.485	.031
$F e_{1}-C_{11}$	1.975	-020	$\mathrm{C}_{10}-\mathrm{C}_{12}$	1.46	.030
$\mathrm{Fc}_{1}-\mathrm{Cl}_{12}$	1-954	-0:-	$\mathrm{C}_{11}-\mathrm{C}_{13}$	1.473	.030
$\mathrm{Fe}_{3}-\mathrm{C}_{4}$	1.995	-012	$\mathrm{C}_{12}-\mathrm{C}_{18}$	1.493	-030
$\mathrm{Fe}_{2}-\mathrm{C}_{\mathrm{t}}$	2.03%	.0:2			
$\mathrm{Fe}_{3}-\mathrm{C}_{10}$	2.055	.021			
$\mathrm{Fe}_{3}-\mathrm{Ciz}_{\text {i }}$	2.049	.020			

T.1BLE 7

ROND MSGLES IN THE VIOLEE ISOMER

-4 83%	Degrees	σ	- 1 Hgle	Degres5	σ
$\mathrm{Fe}_{ \pm}-\mathrm{Fe}_{2}-\mathrm{Fe}_{3}$	63-5	0.2	$\mathrm{Fe}_{1}-\mathrm{C}_{1}-\mathrm{O}_{1}$	-5-5.2	$=-5$
$\mathrm{Fe}_{1}-\mathrm{Fe}_{2}-\mathrm{Fe}_{3}$	5 5.0	0.1	$\mathrm{Fe}_{1}-\mathrm{C}_{2}-\mathrm{O}_{2}$	1-3.3	$=-5$
$\mathrm{Fe}_{1}-\mathrm{Fe}_{3}-\mathrm{Fe}^{2}$	55.5	0.1	$\mathrm{Fe}_{2}-\mathrm{C}_{5}^{-}-\mathrm{O}_{3}$	5-1-5	$=6$
$\mathrm{C}_{1}-\mathrm{Fe}_{2}-\mathrm{C}_{2}$	SS^{3}	1.3	$\mathrm{Fe}=\mathrm{Cr}_{4}$	1-2, 3	-5
$C_{3}-\mathrm{Fe}_{ \pm}-C_{2}$	95.2	1.3	$\mathrm{Fe}_{2}-\mathrm{C}_{3}-\mathrm{O}_{5}$	154.9	2.2
$\mathrm{C}_{3}-\mathrm{Fe}_{2}=-\mathrm{C}_{3}$	20-4	I-3	$\mathrm{Fe}_{3}-\mathrm{C}_{5}-\mathrm{O}_{5}$	173.9	2.7
$C_{5}-\mathrm{F}^{-} e_{2}-\mathrm{C}_{5}$	95-5	1.-	$\mathrm{Fe}_{3}-\mathrm{C}_{-}-\mathrm{O}_{-}$	175.0	$2-9$
$\mathrm{C}_{5}-\mathrm{Fe}_{2}-\mathrm{C}_{5}$	95.6	1.5	$\mathrm{Fe}_{3}-\mathrm{C}_{3}-\mathrm{O}_{3}$	1-7.1	2.9
$\mathrm{C}_{5}-\mathrm{Fe}_{2}-\mathrm{C}_{5}$	94.1	1.5	$\mathrm{C}_{10}-\mathrm{C}_{9}-\mathrm{C}_{15}$	1220	1.9
$\mathrm{C}-\mathrm{Fe}_{2}-\mathrm{C}_{5}$	95-r)	1.5	$C_{9}-C_{10}-C_{1:}$	12.5 .3	1.9
$\mathrm{C}_{9}-\mathrm{Fe}_{1}-\mathrm{C}_{10}$	$4^{17}-3$	0.9	$\mathrm{C}_{12}-\mathrm{C}_{12}-\mathrm{C}_{13}$	123.3	1.0
$C_{10}-F=-C_{11}$	10-6	0.3	$C_{12}-C_{12}-C_{16}$	124	1.9
$C_{11}-\mathrm{Fec}_{1}-\mathrm{C}_{12}$	± 1.0	0.9			
$\mathrm{C}_{9}-\mathrm{Fe}_{3}-\mathrm{C}_{12}$	104.3	0.9			
$\mathrm{C}_{5}-\mathrm{Fc}_{=}-\mathrm{C}_{2}$	101.3	0.9			
$C_{10}-\mathrm{Fe}_{3}-C_{11}$	102.0	0.5			

The triangular structure for $\mathrm{Fe}_{3}(\mathrm{CO})_{1 \pm}$ proposed by Dahl and Rundle ${ }^{5 *}$, suggests a simple picture of the reactions leading up to the formation of the ferracyclopentadiene ring. The structure of the violet compound (Fig. 3) is then closely related to the individual structures of both reactants and can be viewed as simply a double substitution of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ by-diphenylacetylene. The two diphenvlacetylene groups remain

[^1]Table 8
INFORMATION ON THE PHENYL GROLPS OF BOTH ISOMERS

Pheryid group at	-fverage $C-C$ distance (\mathcal{A})	fierage deviafion	R.m.s. dev. from besfl.s. plane (i)	Av. der: of $C-C-C$ angle from mean	. Angle of tuist	Angle of bend
Black isomer						
C_{13}	1-411	. 033	. 018	2.15	55°	$5{ }^{\circ}$
C_{11}	1.399	.029	.016	$1.4{ }^{2}$	54	$-2=$
C_{13}	1.402	-014	.012	20°	57°	2^{2}
C_{16}	1.396	.ors	. 011	$1.6{ }^{\text {c }}$	55°	-5^{3}
Folet iscmer						
C_{13}	1.104	. 015	.015	$1.7=$	620	19
C_{14}	1.431	. 017	.006	2.6	$36^{=}$	$12=$
C_{15}	1.409	.049	.04 1	$2.1{ }^{2}$	$46^{=}$	10°
C_{16}	1.415	.016	-OII	0.5°	57	20°

- Positive toward Fe_{1} and negative away- from Fe_{1}.
clearly separate (note the interatomic distances in Table 6), and it is the rearrangement to the black compound that represents the synthesis of the butadiene unit as well as the ferracyclopentadiene ring.

The twists of the phenyl groups given in Table S are actually interplanar angles between phenyl group and a reference plane, and must be regarded as resultants of botlı bending and twisting motions. The bendings are negligibly small for the black isomer but not for the violet isomer. For the black isomer the reference plane is the least-squares plane of the ferracyclopentadiene ring; for the violet it is the leastsquares plane of the four acetylene carbon atoms. The bend angle in each case is the angle between the reference plane and the $\mathrm{C}-\mathrm{C}$ bond line to the phentl group. In the black isomer, as in tetraphenyleyclobutadiene iron tricarbony l^{s}, the twists in any molecule are all of the same sense, but not so for the violet isomer. Two phenyls on any one diphenylacetylene group are twisted in the same sense to avoid an obvious steric hindrance. The separation of the two diphenylacetylene groups clearly allows adjacent phenyl groups on opposite sides of the iron plane (on C_{10} and C_{11}, for instance) to have opposite rotations without incurring steric hindrance, but it is not clear why that arrangement is adopted in preference to the other. Goodness of intermolecular packing is very probably decisive, but the deviations on the bends and twists (Table 7) from $C_{a r}$ symmetry and the retention of approximate C_{s} symmetry suggest that relative ease of intramolecular distortion may be important too. We have not followed up this point in detail. As for the individual angles of twist, inspection of all of the interatomic distances in the molecule reveals that the actual angle of twist for each of the phenvls is such as to equalize as much as possible the distances to the carbonyl groups in the same molecule. The shortest intermolecular contacts in both forms are between oxygen atoms; however, a few carbonyl-phenyl contacts may be close enough to affect the balance of forces on the phenyl groups.

The further information on the phenyl groups, in Table S, shows that they are all regular planar hexagons to the accuracy of the determination. The best leastsquares plane was calculated in each case to determine the degree of non-planarity.

The avarage angle at each carbon atom is within $0.0_{4}{ }^{*}$ of 120° except for the phenyl group at C_{15} in the violet isomer, for which it is $119.7 \mathrm{~S}^{\circ}$. The average deviations from the means are about those expected from the least-squares estimates of the standard deviations.

The isomerization of the violet compound results in the formation of a butadiene unit, a recurrent theme in the chemistry of the acetylene-iron-carbanyl complexes ${ }^{9},{ }^{10}$. With the help of the present structure determinations it is easy to visualize the rearrangement in terms of more or less simultaneous breaking of an iron-iron bond, formation of the butadiene bond, and formation of new iron-carbonyl (bridge) bonds, but neither the exact sequence nor the necessary amount of thermal activation energy is clear. More interesting than further speculation, in fact, would be a determination of whether the rearrangement is indeed an uncatalvzed, first-order reaction or not.

ACKSOUIEDGEMENTS

The authors would like to thank the coders of several computer programs: A. Zalkin for the Fourier program; Trieblood, Sparks and Gantzel for least squares; A. Larson for goniostat settings; W. H. Schmint and R. E. Datis for least-squares planes. Also, we would note that W. Hëbel and G. S. D. King of Linion Carbide European Research Associates supplied the crystalline samples along with the densities and preliminary crystallographic data.

```
SUCMMARY
```

The reaction between $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ and diphentlacetylene produces a violet compound $\mathrm{Fe}_{3}\left(\mathrm{CO}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$, which readily transforms to a more stable black isomer. The present X-ray structure determinations have revealed the nature of the bonding in these new three-center complexes. The diphenvlacetylene molecules in the violet isomer remain separate, being located on opposite sides of the triangle of iron atoms, while they unite to form a ferracyelopentadiene ring in the black isomer.

REFERENCES

```
    I W. Hebel aNd E. H. Mraye. F. Inorg. Nuci. Cficme., ro (1959) 250.
```



```
        ilimconsini. rgs% p. si.
```



```
    - R. H. Herber. W. R. KiNGStos and G.K. Wertheim, Inorg. Chem, = (1003) 153.
    & R.I' Dodge awd Y' Schomaner, fcia Cryot. in press.
```


[^0]: * Iresented at the annual meeting of the American Crystailographic Association. Villanova

 * Freseat address: Chemistry Depertment. University of the Pacinc. Stochton. California.

[^1]: - The structure of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ is not entirely certain: the quadrupole splitting and chemical shife in the Brosbbuer effectar seems to demand a linear structure, but the λ-ray evidences rules out this possibility.

